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The structure factors and radial distribution functions of liquid sodium and aluminium were 
calculated using the Hypernetted chain equation and the Machin-Woodhead-Chihara (MWC) 
integral equation. Various oscillatory potentials suggested for these metals were considered in an 
attempt to determine the applicability of these integral equations for these potentials. The 
calculated results are compared with molecular dynamic simulation results. These results 
indicate that the HNC equation underestimates the main peak in S(k) .  When the Friedel 
oscillations are absent then MWC theory gives good results for S(k) .  But when Friedel 
oscillations are present then MWC equation reproduces simulation results beyond the main 
diffraction peak. 

I INTRODUCTION 

Over the last decade there has been a renewed interest in calculating the 
structure and thermodynamic properties of liquid metals'-3 in part due to 
the determination of effeclive potentials from the pseudopotential formalism 
and due to the experimental determination and computer simulation"' of 
the structure factors of various liquid metals. Liquid metals were chosen 
because the structure of these fluids is less dominated by steeply repulsive 
short-ranged forces in contrast to that for the insulating fluids. The effective 
interionic potential used for liquid metals have long range oscillations and 
rather soft repulsive cores8 which differs from the often used hard sphere and 
Lennard Jones potential functions for insulating fluids. The earlier attempt 
was by Ashcroft and Leknerg who obtained the structure factor from the 
exact solution" to the Percus-Yevick (PY) equation" for hard spheres using 
hard sphere diameter as the one independent parameter to get good fit of the 
structure factor, S(k).  Jones" has applied the variational theory of Mansoori 

t Present address: IBM Corporation, Dept. 48B Neighborhood Road, Kingston NY 12401. 
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310 K. N. SWAMY 

and Canfield13 to calculate the equation of state of liquid metals using hard 
sphere diameter as a variational parameter. Umar and Young14 used the 
variational theory to calculate the structure factors. Kumaravadivel and 
Evans' obtained the structure factors of liquid metals using 
Weeks-Chandler-Andersen' (WCA) perturbation theory. Rami Reddy et 
~ 1 . ' ~  applied the optimised cluster theory (OCT) of liquids17 to calculate the 
radial distribution function g(r) of liquid metals. All the approaches thus far 
considered can be classified into four categories : (i) computer simulation, (ii) 
integral equation approaches, the Percus-Yevick (PY), hypernetted chain18 
(HNC) and the Mean spherical approximation" being the most frequently 
used, (iii) perturbation theories relative to some hard sphere systems and (iv) 
those based on one component plasma (OCP)20-22 and charged hard sphere 
system (CHS).23 

Blum and Narten24 applied the Mean spherical approximation and 
calculated the radial distribution function for liquid aluminium. Recently, 
Bratkovsky et ~ 1 . ~ ~  made an analysis of the structure factors of liquid metals 
and concluded that the simple PY approximation appears to be highly 
accurate in the region of the main peak of S ( k )  for the simple metals. Rami 
Reddy26 on the other hand has shown that the PY and MSA g(r)  are in poor 
agreement with computer simulation results. Ailawadi3 used the Singwi- 
Tosi-Land-Sjolander (STLS) scheme32 to obtain the structure of liquid 
metals. But the comparison of S(k)  for liquid sodium and rubidium indicate 
that the STLS S(k)  oscillates out of phase wirh the computer simulation 
results. 

In the methods based on the perturbation theory, most of the theories were 
based on perturbations relative to a chosen hard sphere system. Even though 
such expansions are accurate for insulating liquids whose repulsive cores 
mimic the hard repulsions they are not accurate for liquid metals since the 
repulsive potentials are softer than the Lennard Jones r - 1 2  core. The blip 
function theory27 which was used to calculate the structure of the repulsive 
cores has to be carried out to higher terms which involves higher order 
correlation functions, the information about which is too meagre at this 
stage. To overcome this difficulty Swamy and Reddy2' used integral equation 
perturbation theories29 and the OCT and obtained good results for g(r) for 
potentials which have a softer repulsive core. They considered using both the 
PY and HNC equations. One difficulty with this formalism is that it requires 
solving twice the integral equation, one for the hard spheres (with the 
exception for PY for which analytical solutions are available) and the other 
for the reference part of the potential and thus can be time consuming. Thus 
calculating S(k)  from integral equations is simpler and is the aim of the 
present work. So far a careful comparison of S ( k )  obtained from integral 
equations with computer simulation has not been reported for various 
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STRUCTURE OF LIQUID METALS 311 

oscillatory potentials and this paper attempts to contribute in this direction. 
In Section I1 we discuss the HNC and the Machin-Woodhead-Chihara 
integral equation. Section I11 presents the various oscillatory potentials used 
in the present study. Section IV discusses the numerical methods used in 
solving these integral equations. In Section V we present our results and 
compare them with the computer simulation results. The conclusions of this 
study are contained in Section VI. 

II HNC AND MACHIN-WOODHEAD-CHIHARA 
INTEGRAL EQUATIONS 

The direct correlation function c(r) is defined in terms of the pair correlation 
function g ( r )  by the Ornstein-Zernicke relation 

&12) = C(T.12) + P h(r2314r13) dr3 (1) s 
where h(r) = g ( r )  - 1 and p ( = N / V )  is the number density. The HNC 
equation supplements Eq. (1) with an approximate closure relation by 

is the Mayer function and U ( Y )  is the interparticle potential function with 
/i' = l/k, T and 

y(v) = g ( r )  ePU(') (4) 

Lado3' and Madden and FittsZ9 have shown that for insulating fluids the 
effects of long ranged perturbation can be given accurately by approxima- 
tions based on the HNC theory. 

Machin-Woodhead-Chihara integral equation 

Using Percus's functional Taylor series expansion Chihara3' has derived an 
integral equation and is given by3' 

V c ( r )  = -v[g(r)(eP"(') - I)] - g(r)v/i 'u(r) 

u(r) = w(r) + u(r) 

( 5 )  

such that 

(6) 
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312 K. N. SWAMY 

Though Chihara offers no prescription for separation of the potential into 
w(r) and u(r), we made use of the separation proposed for insulating fluids by 
Weeks et al. (WCA).15 In WCA theory the potential separation is accom- 
plished by setting 

where R ,  is the distance at which the potential is minimum. 

function through the relation 
The structure factor S(k)  can be computed from the direct correlation 

S(k)  = 1/[1 - pE(k)] (9) 

where E(k) is the Fourier transform of c(r) defined by 

Z(k) = c(r) eik'r dr s 
Ill POTENTIAL FUNCTIONS 

Calculations were performed for liquid sodium and aluminium for various 
potential functions. These potentials have different types of repulsive cores. 
The potentials considered for liquid sodium are: 

i) A potential suggested by Schiff with a repulsive core l/r7 intermediate 
between the Born-Mayer soft core and the Lennard Jones hard core. It has 
the form 

V,(r) = Cos(2kF,r) 

ii) A potential with a Born-Mayer soft core with large oscillations and has 
the form 

V,(r) = Cos(2kF,r) 

+ E3 exPCF3 - G3rhoI (12) 

The units of length and energy chosen are c = 3.24 8, and E = 599 K. 
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STRUCTURE OF LIQUID METALS 313 

In the case of aluminium the following potential functions were considered 

i) A potential with a hard l ,k12 core given by 

ii) The other three potentials considered for liquid aluminium are all 
derived from pseudopotential formalism. The first is obtained from Ashcroft 
pseudopotential and with Geldart-Vosko screening and is designated as 
AGV. The other two potentials SGT and TGT are obtained from Geldart- 
Taylor screening. The quasiharmonic phonon dispersion curves for alumin- 
ium calculated using these potentials are in good agreement with experiment. 
Details of computing these potentials is discussed by Ebbsjo et ~ 1 . ~  The TGT 
potential has been used in investigations of liquid and solid a l ~ m i n i u m ~ ~ , ~ ~  
and in a Monte Carlo calculation for liquid al~minium.~’  As seen from 
Figure 1 the repulsive parts of all these three potentials are similar while the 
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FIGURE 1 
TGT. The energy is in units of erg and distance in A. 

AGV, SGT and TGT potentials: ~ AGV, ------------- SGT, 
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314 K. N. SWAMY 

parts outside the core are different. The units of length and energy chosen are 
cr = 2.56 8, and E = 1198 K. The potential parameters for V,, V, and V5 are 
taken from S ~ h i f f . ~  

In the case of V,, V, and V, the molecular dynamic simulations were carried 
out by Schiff. For AGV, SGT and TGT potentials molecular dynamic 
simulations were carried out by Ebbsjo et aL6 

IV NUMERICAL COMPUTATIONS 

The HNC and h'achin-Woodhead-Chihara integral equations were solved 
in the r-space by ti msforming Eq. (1) into bipolar coordinates. In the case of 
V,, V, and V, a step size of 0.05 r~ was used whereas for AGV, SGT and TGT a 
step size of 0.039 cr was used. All the integrals were evaluated using Simpsons 
rule. The iterations were truncated when 

lYY"(U) - y::l(U)l IO.001 (14) 

Convergence was enhanced by using Broyles mixing technique. All the 
Fourier transforms were evaluated using Filon's method. 

RESULTS 

In Figure 2 we compare the results of the radial distribution functions 
obtained from the Machin-Woodhead-Chihara and the HNC equations for 
liquid sodium for the potentials V, and V, and compare them with the 
molecular dynamic simulation results of Schiff. A similar comparison is made 
in Figures 3-5 for the structure factor S(k) .  The wave number k in these 
figures is given as a dimensionless variable in units of r ~ .  These comparisons 
clearly indicate that when the Friedel oscillations are absent the MWC 
integral equation is in excellent agreement with the computer simulation 
results. When the Friedel oscillations are present then except near the main 
diffraction peak the MWC results are in good agreement with M D  results. 
The HNC results in both cases are not in such good agreement with MD as 
those for MWC results. 

In Figure 6, a comparison of g(r) from MWC and HNC integral equations 
for liquid aluminium for V5(r) is made with available M D  simulation results 
and Figures 7 and 8 make a similar comparison for the S(k) .  A similar trend 
found for sodium is observed in the case of aluminium also. 

The results for g(r) obtained from the MWC and HNC for AGV, SGT and 
TGT potentials for liquid aluminium are compared with MD results in 
Figures 9-1 1. In Figures 12-14 a similar comparison is made for S ( k ) .  These 
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FIGURE 2 g(r) for V,(r) cut at r = 1.5: MD, ~ MWC and ------------- HNC. 

k 
FIGURE 3 S ( k )  for V,(r) cut at r = 1.53: MD, ~ MWC and ------------- HNC. 
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k 
FIGURE 5 S ( k )  for V,(r) cut at r = 1.2. See Figure 3 for other symbols. 
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FIGURE 7 S ( k )  for V5(r) cut at r = 1.2. See Figure 3 for the symbols. 
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FIGURE 8 Same as Figure 7 but cut at r = 3.3. 
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FIGURE 9 y(r) for AGV at 988 K. See Figure 2 for the symbols used. 
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FIGURE 10 Same as Figure 9 but for SGT at 970 K. 
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FIGURE 11 Same as Figure 9 but for TGT at 984 K. 

319 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



3.0 - 

n * 2.0- 

1.0 - 

0.0 - 

k 
FIGURE 12 S(k) for AGV at 988 K. See Figure 3 for other symbols 
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FIGURE 13 Same as Figure 12 but for SGT at 970 K. 
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comparisons clearly indicate that neither the MWC nor the HNC give 
quantitative agreement with simulation results for these potentials. 

In Table I we collect the S(0) values for the various potentials obtained 
from MWC and HNC equations. The compressibility K ,  is related to S(0) 
through the compressibility sum rule 

S(0) = pk,Tlc (15) 

TABLE I 

Potential MWC HNC MD 

V, cut at 1.2 0.055 0.239 0.050 
V5 cut at 3.3 0.070 0.091 0.060 
V, cut at 1.2 0.078 0.105 0.030 
AGV 0.014 0.037 0.038 
SGT 0.018 0.038 0.041 
TGT 0.008 0.026 0.024 
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322 K. N. SWAMY 

CONCLUSIONS 

The main conclusion of this work is that the MWC integral equation gives 
good results for the radial distribution function and S(k)  for the liquid metals 
considered when the Friedel oscillations are suppressed. When the Friedel 
oscillations are present except in the vicinity of the main diffraction peak the 
MWC results are in good agreement with MD results. The results obtained 
from HNC are not in quantitative agreement with the simulation results. 

The above conclusions were drawn when the potential separation was 
accomplished using WCA criterion. One could try a potential separation 
such that the Mayer function (e-Pw(*) - 1) very closely resembles that of a 
hard sphere system. It has been shown earlier by Swamy and Reddy that such 
a separation is not going to improve the results any better. 
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